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ABSTRACT

We have recently conducted a controlled comparison of a number of approximations

for gravitational clustering against the same n-body simulations. These include ordinary

linear perturbation theory (Eulerian), the adhesion approximation, the frozen-flow approx-

imation, the Zel'dovich approximation (describable as first-order Lagrangian perturbation

theory), and its second-order generalization. In the last two cases we also created new ver-

si,,ns of the approximation by truncation, i.e., smoothing the initial conditions by various

sm(>c, thing window shapes and varying their sizes.

The primary tool for comparing simulations to approximation schemes was crosscor-

relation of the evolved mass density fields, testing the extent to which mass was moved to

the right place. 2"he Zel'dovich appro_mation, with initial convolution with a Gaussian
_k _ ik-_e ' . where kc is adjusted to be just into the nonlinear regime of the evolved model

(details in text) worked extremely' well. Its second-order generalization worked slightly

better.

All other schemes, including those proposed as generalizations of the Zel'dovich ap-

pr,,ximation created by adding forces, were in fact generally worse by this measure. By

e-:plicitly checking, we verified that the success of our best-choice was a result of the best

treatment of the phases of nonlinear Fourier components. Of all schemes tested, the ad-

hesion approximation produced the most accurate nonlinear power spectrum and density

distribution, but its phase errors suggest mass condensations were moved to slightly the

wrong location. Due to its better reproduction of the mass density distribution function

and power spectrum, it might be preferred for some uses.

We recommend either n-body simulations or our modified versions of the Zel'dovich

approximation, depending upon the purpose. The theoretical implication is that pancak-

in_ is implicit in all cosmological gravitational clustering, at least from Gaussian initial

conditions, even when subcondensations are present.

Key words: cosmology:theory-dark matter-galaxies:clustering-large scale structure of

th_ _ universe.



I. INTRODUCTION

The gravitational instability picture has emerged as the dominant paradigm for un-

derstanding the growth of structure in the universe from the small-amplitude fluctuations

present at recombination. When the density fluctuations are very small, linear perturba-

tion theory (Eulerian) works well (for a summary see Peebles 1980, 1993). In the deeply

non-linear regime, n-body simulations are usually used, perhaps with simulated hydrody-

namics added. Simulations in general can suffer from a typical fault of numerical results

that they can be quite correct without our understanding why and therefore be difficult

to generalize. Even worse, without approximate analytic solutions as a check, errors may

be unrecognized.

Analytic or quasi-analytic nonlinear approximations occupy an intermediate position.

They can capture some non-linear effects correctly in a way that permits us to understand

and generalize from them more easily. They can also be used to provide boundary condi-

tions for simulations, start them at a more advanced state, or generate large numbers of

approximate realizations, for statistical purposes. It is for this reason that they are worth

proposing; it is also for this reason that they are worth testing objectively in a way that

allows comparisons. In this Letter we report succinctly the main results of such a project.

In Coles, Melott and Shandarin (1993), hereafter CI_'IS, we began by studying the

usual linear (Eulerian) perturbation theory, hereafter L, the lognormal (Coles and Jones.

1991) approximation (which was basically an cxponentiation of L) and the Zel'dovich

(1070) approximation. The lognormal approximation was particularly poor and will not
be considered further in this Letter.

The Zel'dovich approximation (hereafter 1ZA) did surprisingly well, especially in a

modified form in which the initial conditions were smoothed at a scale close to the threshold

of nonlinearity. A number of other schemes have been suggested recently which are designed

to be improvements on 1ZA.

II. APPROXIMATIONS STUDIED

Brief verbal descriptions will be presented for the many approximations tested. For

full details please see the citations.

Linear theory (L) results from perturbing the equations of motion. The result is that

(for _ = l, but easily generalized) the fluctuations in merely grow in amplitude _ cx a(t)

where a is the scale factor. A velocity is of course also implied, but does not produce the

associated _ except to first order. See Peebles (1980, 1993).

The Zel'dovich (1970) approximation (1ZA) consists of the asumption that the velocity

taken from linear theory continues. In comoving coordinates _, _ = 1, this reduces to

d_/a -: constant. The density is then derived from the position of mass elements. The

assumption that the velocity will behave in this way seem especially appropriate when the

acceleration field is constant over large regions, i.e. it was associated with universes in

which there is extensive damping of small-scale density flucutations, such as those with

adiabatic baryon perturbations or hot dark matter. 1ZA was tested (up to resolution

limits) by CMS.



Buchert (1992) has provided the derivation that Zel'dovich never presented for his
approx_imationas resulting from first-order perturbation theory around the Lagrangian
equations of motion. Furthermore, he has extended them to secondorder which includes
tidal forcesand even to third order. We have studied 2ZA and 3ZA as well for damped
models. The 2ZA approachis being studied now for the power-law spectra reported here
(Melott, Buchert, and Weiss,1994).

CMSintroduced the "truncated Zel'dovich approximation" (hereafter 1TZA) by smooth-
ing the initial conditions on the scaleof nonlinearity before applying the approximation.
This consistsof destroying information about deeply nonlinear modesthe approximation
cannot handle. It was inspired by previous observationsthat the pattern of arrangement
of clumps in hierarchical clustering simulations resembledthose of the pancakesin simu-
lations with the samephasesbut all the initial power set to zero for modesthat had gone
nonlinear (Melott and Shandarin 1990; Beacom et al. 1991; Little, Weinberg and Park

1991; see also Melott and Shandarin 1993). They found that 1TZA worked extremely

well, outperforming everything else. More recently Melott, Pellman and Shandarin (1994,

hereafter MPS) searched for the optimum scale and shape of truncation, resulting in con-

siderable improvement over the CMS formulation by using a Gaussian smoothing of the

initial conditions. We shall refer to this optimized form as 1TZA. It is important to stress

that the results of 1TZA do not resemble those of 1ZA for most spectra. It is for this

reason that claims that an approximation is better than the Zel'dovich approximation are

not very meaningful. 1ZA and 2ZA are quite bad for power-law spectra n > -1 (see part

III).

The "frozen flow" approximation (FFA) Matarresse et al. (1992) is one in which the

particle follow streamlines of the original linear velocity field. This takes multiple steps,

because the particles' velocity depends on their position. It is not strictly an analytic

approximation but it is so fast we will include it. FFA was tested by Lucchin et al. (1994)

hereafter LMMM.

The adhesion approximation (AA) Gurbatov, Saichev, and Shandarin 1989) contains

ZA as a core, but adds an effective viscosity term which causes intersecting flows to "stick."

This is an attempt to correct the first serious fault of ZA, that particles continue past shell

crossing in the approximation, but are slowed by gravity and fall back in the real world.

Melott, Shandarin, and Weinberg (1994) tested the adhesion approximation using the

method of Weinberg and Gunn (1990).

Although plans exist to study it in the same way, we have not delayed this letter to

include results for the "frozen potential" FP method (Brainerd et al. 1994, Bagla and

Padmanabhan 1994). Although it may perform well, it is very far from an analytic ap-

proximation. It really consists of doing an n-body simulation without re-solving for the

potential at each step. This takes advantage of the fact that the potential is constant

to linear order, and dominated by longwave modes which are little affected by nonlin-

earities. But analytic solutions do not exist, and solving for the potential is easy with

modern numerical methods. It might provide insight, but it will never replace an analytic

approximation or an n-body simulation.

One might propose generalizations of FFA, AA, or FP in which the initial potential
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is smoothed. But in this casethey would revert to something very close to 1TZA. The
whole purpose for creating them was to handle the nonlinear modes,which 1TZA simply
removesfrom the intial conditions.

When trying to restoreinitial conditions from the evolvedstate, conclusions presented

herein do not apply. See Melott (1993).

III. PROCEDURES

All of our approximations are compared to a group of n-body simulations more fully

described in Melott and Shandarin (1993). These were 1282 particle runs with Gaussian

initial conditions characterized by power-law spectra of density fluctuations (see Peebles

1980) P(k) e_ k n for n = -2,-1,0, +1 which includes most cases of cosmological interest.

Conclusions about likely behavior under specific physical scenarios can be reconstructed

from the power-law slopes just going nonlinear at the moment under consideration. The

r_-body simulation and the approximations were compared primarily by cross-correlation

S- < 6162 > (I)
0.1 0"2

where 6i =< 6 7 >1/2 and 6i is the pixellated density of the simulation or approximation.

If they are identical, S = +1. We allowed for the fact that condensations might be just

slightly in the wrong place by calculating S for both fields with a wide variety of smoothing

lengths.

Some statistical analysis was also done, including the power spectrum and density

distribution function. These will not be shown here, but can be found in the various more

detailed studies.

The approach used here has a number of advantages over those used for testing in

most of the approximation proposals. Most obviously, they are all tested against the same

initial conditions with the same methods, so they can be compared with one another.

We have also checked for detailed dynamical agreement rather than just a similar visual

appearance or power spectrum. One of the things we learned was that power spectra can

be similar for two approximations while phases can be in much better agreement in one

scheme than in another. Crosscorrelation is sensitive to phase information.

IV. RESULTS

In Figure 1 we show the crosscorrelation S as a function of o'1, the rms density

fluctuations of the smoothed nbody for two indices n = -1 and +1. The case +1 is

the most demanding and shows the differences. The case -1 is of interest because it is

probably close to the slope just going nonlinear today.

It is clear that TZA is the best choice by this criterion. 1TZA, or just TZA as described

by MPS, consists of Gaussian smoothing near the scale of nonlinearity. We define knt by

k,tLa2(t) = P(k)d a ---=1 (2)
dO



where P is the power in the initial conditions. Therefore knt is the wavenumber where o" = 1

by extrapolation using linear theory. MPS found that the optimum smoothing was convolu-

tion of initial density by a Gaussian e -k=/2_ with kc = 1.5 knt(n = -2,-1), 1.25k,t(n =

0) or knt(n = +1). As the maximum is fairly broad, one could use kG = 1.25knt for all

cases without serious error. In the case of non-power law spectra we recommend examining

the local slope at knt.

This approximation scheme is within reach of anyone who has code to implement

the Zel'dovich approximation, and a Fast Fourier Transform. It is extremely simple to

implement, and takes about as much CPU time as one step in an n-body simulation. MPS

also checked for agreement of particle positions and velocities, and found generally small

errors. Borgani et al (1994) have already used 1TZA to generate large ensembles to test

cluster-cluster correlations, and found good agreement with the large n-body simulations

of I(lypin and Rhee (1993).

Preliminary results indicate that 2TZA (Second order Lagrangian perturbation the-

ory with Gaussian smoothing of initial conditions) is a small but measurable improvement

over 1TZA (Melott, Buchert, and Weiss 1994). It is important to also note that as re-

ported in detail by Melott, Shandarin, and Weinberg (1994), the adhesion approximation

more accurately reproduces the power spectrum and mass density distribution function

of the simulations than does 1TZA. For spectral index n < -1, the crosscorrelation is

not bad, and for this reason the adhesion approximation might be preferred for certain

purposes. For most purposes, use of 1TZA is a simply implemented major improvement

over approximations now in use.
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FIGURE CAPTIONS

Figure 1 A plot of the crosscorrelation S of each of the various approximate solutions with

the nbody simulation, both being smoothed by the same (variable) size Gaussian

window, against o', the rrns density fluctuation in the smoothed n-body simulation.

Results are shown for spectral indices n = +1 and n = -1 at the moment when

k,_l = 8kf, where k I is the fundamental mode of the box. In order of increasing

accuracy, Linear theory is the short dashed line, the frozen flow appro.'dmation is the

dottled line, the adhesion approximation is the long dashed line, and the truncated

Zel'dovich approximation (1TZA) is the solid line.

Figure 2 (a) A greyscale plot of a thin slice of the n = +1 nbody simulation at the moment

when knl = 8k I. (b) A corresponding slice of the 1TZA approximation to the same.
2TZA does not look much different.

Figure 3 (a) As in Figure 2(a) but for r_ = -1. (b) As in Figure 2(b), but for n = -1.
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